

SIMULATION TRAINING INDEX

SOLIDWORKS Simulation Static – 3 Days (21h) SOLIDWORKS Motion – 2 Days (14h) SOLIDWORKS Simulation Professional – 2 Days (14h) SOLIDWORKS Simulation Premium – 3 Days (21h) SOLIDWORKS Simulation Premium Composite – 1 Day (7h) SOLIDWORKS Flow Simulation – 2 Days (14h)	24		
		SOLIDWORKS Flow Simulation: Electronic Cooling Module – 1 Day (7h)	31
		SOLIDWORKS Flow Simulation: HVAC Module – 1 Day (7h)	32
		SOLIDWORKS Plastics 1.5 Days (10h), 2 Days (14h) or 3 Days (21h)	33
		SOLIDWORKS Sustainability- 1 Day	35

SOLIDWORKS Simulation Static – 3 Days (21h)

1. The Analysis Process

- The Analysis Process
- SOLIDWORKS simulation options
- Preprocessing
- Meshing
- Processing
- Post-processing
- Multiple studies
- Reports

2. Mesh Controls, Stress Concentrations and Boundary Conditions

- Mesh control
- Understanding the effect of boundary conditions

3. Assembly Analysis with Contacts

- Contact analysis
- No penetration or bonded contact
- Pliers with global contact
- No penetration local contact: Accuracy

4.Symmetrical and Free Self-Equilibrated Assemblies

- Shrink fit parts
- Analysis with soft springs

5. Assembly Analysis with Connectors and Mesh Refinement

- Connecting components
- Connectors
- Mesh Control in an Assembly
- Problem statement
- Draft quality coarse mesh analysis
- Mesh analysis

6. Compatible/ Incompatible Mesh

- Compatible /incompatible meshing
- Centrifugal force
- Cyclical symmetry

7. Analysis of Thin Components

- Thin components
- Mesh with solid elements
- Refined solid mesh
- Solid vs. shell
- Creating shell elements
- Shell elements mid plane surface
- Results Comparison

8. Mixed Meshing Shells & Solids

Mixed meshing solids and shells

9. Beam Elements – Analysis of a conveyor frame

Beam and truss elements

10. Mixed Meshing Solids, Beams & Shells

- Mixed meshing
- Beam Imprint

11. Design Study

- Design study
- Multiple load cases
- Geometry modification
- → Continued...

SOLIDWORKS Simulation Static (continued...)

12. Thermal Stress Analysis

- Thermal stress analysis
- Saving models in its deformed shape

13. Adaptive Meshing

- Adaptive meshing
- H-adaptivity study
- P-Adaptivity study
- H vs P elements summary

14. Large Displacement Analysis

- Small vs Large displacement analysis
- Small displacement linear analysis
- Large displacement non-linear analysis

Appendix A. Meshing, Solvers, and Tips & Tricks

- Meshing Strategies
- Geometry Preparation
- Mesh Quality
- Mesh Controls
- Meshing Stages
- Failure Diagnostics
- Tips for Using Shell Elements
- Hardware Considerations in Meshing.
- Solvers in SOLIDWORKS Simulation
- Choosing a Solver
- Email Notification Settings

SOLIDWORKS Motion – 2 Days (14h)

1. Introduction to Motion Simulation and Forces

- Basic motion analysis
- Forces
- Results

2. Building a Motion Model and Post Processing

- Creating local mates
- Mates
- Local mates
- Power
- Plotting kinematic results

3. Introduction to Contacts, Springs and Dampers

- Contact and friction
- Contact
- Contact groups
- Contact friction
- Translational spring
- Translational damper
- Post-processing
- Analysis with friction (optional)

4. Advanced Contact

- Contact forces
- STEP function
- Contact: Solid bodies
- Geometrical description of contacts
- Integrators
- Instability points
- Modifying result plots
- Path Mate Motor

5. Curve to Curve Contact

- Contact forces
- Curve to curve contact
- Solid bodies vs. Curve to curve contact
- Solid bodies contact solution

6. CAM synthesis

- Cams
- Trace path
- Exporting trace path curves

7. Motion Optimisation

- Motion Optimisation
- Sensors
- Optimisation analysis

8. Flexible Joints

- Flexible joints
- System with Flexible Joints

9. Redundancies

- Redundancies
- How to check for redundancies
- Typical redundant mechanisms

10. Export to FEA

- Exporting results
- Export of load
- Direct solution in SOLIDWORKS motion

11. Event Based Simulation

- Event based simulation
- Servo motors
- Sensors
- Task

12. Design Projects (Optional)

- Design Project
- Self-guided problem Part 1
- Self-guided problem Part 2
- Problem solution Part 1
- Creating the force function
- Force expression

SOLIDWORKS Simulation Professional – 2 Days (14h)

*SOLIDWORKS Simulation Static is a prerequisite for this class.

1. Frequency Analysis of Parts

- Modal analysis basics
- Frequency analysis with supports
- Frequency analysis without supports
- Frequency analysis with load

2. Frequency Analysis of Assemblies

- All bonded contact conditions
- Bonded and allow penetration contacts

3. Buckling Analysis

Buckling analysis

4. Load Cases

Load Cases

5. Sub-modeling

Sub-modeling

6. Topology Optimization

- Topology Analysis
- Manufacturing Controls
- Mesh Effects
- Load Cases in Topology Studies
- Export Smoothed Mesh

7. Thermal Analysis

- Thermal analysis basics
- Steady state thermal analysis
- Transient thermal analysis
- Transient analysis with time varying load
- Transient thermal analysis using a Thermostat

8. Thermal Analysis with Radiation

Steady state analysis

9. Advanced Thermal Stress 2D Simplification

- Thermal stress analysis
- Thermal analysis
- 3D model
- Microchip Testing Assembly

10. Fatigue Analysis

- Fatigue
- Stress-life (S-N) based fatigue
- Thermal study
- Thermal stress study
- Fatigue terminology
- Fatigue study
- Fatigue study with dead load

11. Variable Amplitude Fatigue

Fatigue study

12. Drop Test Analysis

- Drop test analysis
- Rigid floor drop test
- Elastic floor, Elasto-Plastic Material
- Elasto-plastic material model
- Drop test with contact (optional)

13. Optimization Analysis

- Optimization analysis
- Static and frequency analyses

14. Pressure Vessel Analysis

- Pressure vessel analysis
- Manhole nozzle flange and cover

Competences Evaluation: During the class work, the instructor will show the exercises and explain the solutions to the entire class.

Instructor: SolidXperts trainers are Certified SOLIDWORKS Instructors (CSWI) and authorized by Emplois Québec.

Course Materials: One or more training manuals are included with the training course (Exceptions apply to teachers and students from educational institutions).

Attestation: A certificate will be given to the student at the end of the course to attest the successful completion of the requirements for the course.

SOLIDWORKS Simulation Premium – 3 Days (21h)*SOLIDWORKS Simulation Static and SOLIDWORKS Simulation Professional is a prerequisite for this class.

NON-LINEAR

1. Large Displacement Analysis

- Linear static analysis
- Nonlinear static study
- Linear static study (Large displacement)

2. Incremental Control Techniques

- Incremental control techniques
- Linear analysis
- Nonlinear analysis Force control
- Nonlinear analysis Displacement control

3. Non-Linear Static Buckling Analysis

- Linear buckling
- Linear static study
- Nonlinear symmetrical buckling
- Nonlinear asymmetrical buckling

4. Plastic Deformation

- Plastic deformation
- Problem statement
- Linear elastic
- Nonlinear von Mises
- Nonlinear Tresca's
- Stress accuracy
- Non-linear Elastic Material

5. Hardening Rules

- Hardening rules
- Isotropic hardening
- Kinematic hardening

6. Analysis of Elastomers

- Two constant Mooney-Rivlin (1 material curve)
- Two constant Mooney-Rivlin (2 material curves)
- Two constant Mooney-Rivlin (3 material curves)
- Six constant Mooney-Rivlin (3 material curves)

7. Nonlinear Contact Analysis

Problem statement

8. Metal Forming

Bending

DYNAMIC

1. Vibration of a Pipe

- Static analysis
- Frequency analysis
- Dynamic analysis (slow force)
- Dynamic analysis (Fast force)

2. Transient Shock Analysis According to MILS-STD-810G

Model with remote mass

3. Harmonic Analysis of a Bracket

Harmonic analysis of a bracket

4. Response Spectrum Analysis

- Response Spectrum Analysis
- Response Spectrum

5. Random Vibration Analysis According to MIL-STD-810G

Random vibration analysis according to MIL-STD-

6. Random Vibration Fatigue

- Material properties, S-N curve
- Random vibration fatigue options

7. Nonlinear Dynamic Analysis of an **Electronic Enclosure**

- Linear dynamic analysis
- Nonlinear dynamic analysis

Course Objectives: At the end of the course, the student will know the capabilities of the software and will be able to use the features.

Training Course: Training is given in class at SolidXperts or online where each student has access to a workstation or to an online version.

Methodology: Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation: During the class work, the instructor will show the exercises and explain the solutions to the entire class.

Instructor: SolidXperts trainers are Certified SOLIDWORKS Instructors (CSWI) and authorized by Emplois Québec.

Course Materials: One or more training manuals are included with the training course (Exceptions apply to teachers and students from educational institutions).

Attestation: A certificate will be given to the student at the end of the course to attest the successful completion of the requirements for the course.

SOLIDWORKS Simulation Premium Composite – 1 Day (7h)*SOLIDWORKS Simulation Static and SOLIDWORKS Simulation Professional is a prerequisite for this class.

- Introduction to Composites
- Objectives
- Composite Materials
- Composite Lamina
- Composite Laminate
- SOLIDWORKS Simulation Premium:
- Composites
- Composite Post Processing
- Case Study: Mountain Board
- **Project Description**
- Stages in the Process
- Lamina Properties
- **Experimental Measurements**
- Micromechanics

- Required Parameters
- Strength Parameters
- **Composite Options**
- Composite Orientation
- Offset
- Shell Alignment
- Composite Post Processing
- Stresses
- Inter Laminar Shear
- Failure Criterion
- **Shear Stresses**
- Summary
- Reference

SOLIDWORKS Flow Simulation – 2 Days (14h)

1. Creating a SOLIDWORKS Flow Simulation Project

- Model preparation
- Post-Processing

2. Meshing

- Computational mesh
- Basic mesh
- Initial mesh
- Geometry resolution
- Result resolution / Level of initial mesh
- Control planes

3. Thermal Analysis

- Fans
- Perforated plates

4. External Transient Analysis

- Reynolds number
- External flow
- Transient analysis
- Turbulence intensity
- Solution adaptive mesh refinement
- Two-Dimensional Flow.
- Computational domain
- Calculation control options
- Time animation

5. Conjugate Heat Transfer

- Conjugate Heat Transfer
- Real Gases

6. EFD Zooming

EFD zooming

7. Porous Media

- Porous media
- Design modification

8. Rotating Reference Frames

- Rotating reference frame
- Noise Prediction
- Tangential faces of rotors
- Time step

9. Parametric Study

- Parametric analysis
- Steady state analysis

10. Free Surface

Free Surface

11. Cavitation

Cavitation

12. Relative Humidity

Relative humidity

13. Particle Trajectory

Particle trajectories

14. Supersonic Flow

Supersonic flow

15. FEA Load Transfer

FEA Load Transfer

SOLIDWORKS Flow Simulation: Electronic Cooling Module – 1 Day (7h)

*SOLIDWORKS Flow Simulation is a prerequisite for this class.

1. Introduction to Electronics Module

- Objectives
- Electronic Module
- Case Study: Computer Box
- Project Description
- Conclusions

SOLIDWORKS Flow Simulation: HVAC Module – 1 Day (7h)

*SOLIDWORKS Flow Simulation is a prerequisite for this class.

1. Introduction to HVAC

- Objectives
- **HVAC** Module
- Case Study: Office
- Project Description
- Radiation
- Radiation Transparency
- Radiation Source
- Radiative Surface
- Discussion
- **Comfort Parameters**
- Conclusions

Course Objectives: At the end of the course, the student will know the capabilities of the software and will be able to use the features. Training Course: Training is given in class at SolidXperts or online where each student has access to a workstation or to an online version. Methodology: Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation: During the class work, the instructor will show the exercises and explain the solutions to the entire class. Instructor: SolidXperts trainers are Certified SOLIDWORKS Instructors (CSWI) and authorized by Emplois Québec. Course Materials: One or more training manuals are included with the training course (Exceptions apply to teachers and students from educational institutions).

Attestation: A certificate will be given to the student at the end of the course to attest the successful completion of the requirements for the course.

SOLIDWORKS Plastics 1.5 Days (10h), 2 Days (14h) or 3 Days (21h) *The SOLIDWORKS Plastics training manual covers all the features and functions of the SOLIDWORKS Plastics application.

*The SOLIDWORKS Plastics training manual covers all the features and functions of the SOLIDWORKS Plastics application.

Lessons 1 through 8 cover the features of SOLIDWORKS Plastics Standard (1.5 day).

Lessons 1 through 14 cover the features of SOLIDWORKS Plastics Professional (2 day)

Lessons 1 through 19 cover the features of SOLIDWORKS Plastics Premium (3 day).

1. Basic Flow Analysis

- Basic Flow Analysis
- Element Types
- Meshing
- The PlasticsManager Tree
- Material
- Injection Location
- Running a Flow Analysis
- Flow Results

2. Detecting Short Shots

- Detecting Short Shots
- Fill Settings
- Flow Front Central Temperature

3. Automation Tools

- Automation Tools
- Duplicate Study
- Copying Settings
- Batch Manager

4. Injection Locations and Sink Marks

- Injection Locations and Sink Marks
- Injection Location Rules
- Sink Marks

5. Materials

- Materials Properties
- User-Defined Database
- Resin Properties
- Heat Transfer Properties
- Viscosity
- PCT Data
- Mechanical Properties

6. Mesh Manipulation

- Local Refinement of Mesh
- Element Issues
- Mesh Editing
- Leader Lines
- Solid Mesh
- Solid Mesh types

7. Detecting Air Traps

- Detecting Air Traps
- Air Traps
- Venting

8. Gate Blush

- Gate Blush
- Runner Elements

9. Packing and Cooling Times

- Pack and Cooling
- Flow/Pack Switch
- Pack Stage
- Pack Analysis
- Pack Results
- X-Y Plo
- CoolingTimes

10. Multiple Cavity Molds

- Multiple Cavity Molds
- Mold Layouts
- Channel Design
- Runner Channel Design
- Runner Wizard Channel DesignFamily Mold Layout
- Using Runner-Balancing

11. Symmetry Analysis

- Symmetry Analysis
- Symmetry Face
- → Continued...

SOLIDWORKS Plastics (continued...)

12. Valve Gates and Hot Runners

- Valve Gates and Hot Runners
- Hot Runners
- Valve Gates

13. Reaction Injection Molding

Reaction Injection Molding

14. Using Inserts

- Using inserts
- Cavities and Inserts
- Materials for Inserts

15. Multi Shot Mold

Multi Shot Mold

16. Gas Assistance Molding

- Using Inserts
- Gas Assist

17. Cooling Analysis

- Cooling Analysis
- Cooling
- Cooling Channels and Mold Bodies
- Coolant
- Mold
- Cool Settings
- Cooling Simulations
- Cool Analysis
- Cool Results
- Baffle
- Bubbler

18. Warpage Analysis

- Warpage Analysis
- Shrinkage
- Warpage
- Warp Settings
- Flow, Pack and Warp Analysis

WWW.SOLIDXPERTS.CON

Course Objectives: At the end of the course, the student will know the capabilities of the software and will be able to use the features.

SOLIDWORKS Sustainability-1 Day

1. SustainabilityXpress

- Evaluating the Environmental Impact of a Part
- Selecting a Material
- Using the Find Similar Material Tool
- Setting the Manufacturing Options
- Setting Use Options
- Using the Environmental Impact Dashboard
- Impact Assessment Methodologies
- Creating a Report
- Exporting Settings for a SOLIDWORKS Sustainability Study
- Adding Materials
- Updating the Materials Database

2. SOLIDWORKS Sustainability

- SOLIDWORKS Sustainability Overview
- Sustainability Task Pane Views
- Evaluating the Environmental Impact of a Part
- Selecting a Material
- Using the Find Similar Material Tool
- Setting the Manufacturing Options
- Setting Use Options

- Using the Environmental Impact Dashboard
- Impact Assessment Methodologies
- Creating a Report
- Exporting Settings for a SOLIDWORKS Sustainability Study
- Evaluating the Environmental Impact of an Assembly
- Preparing the Assembly to Be Evaluated
- Defining the Assembly Process
- Specifying Assembly Use Parameters
- Modifying Transportation Defaults
- Modifying End of Life Disposal Defaults
- Specifying Duration of Use
- Modifying Components
- Adding Materials
- Adding Sustainability Data to a Custom Material
- Assigning Financial Impact to a Custom Material
- Updating the Materials Database
- Requesting Materials
- Visualizing Sustainability Properties

WWW.SOLIDXPERTS.COM

Course Objectives: At the end of the course, the student will know the capabilities of the software and will be able to use the features.