SOLIDWORKS SOLIDWORKS Simulation Training

Course Outline

SOLID PERTS

ENSURE YOUR SUCCESS IN 3D DESIGN WITH SOLIDWORKS

TABLE OF CONTENTS - SOLIDWORKS SIMULATION

SOLIDWORKS Simulation Static – 3 days (21h)	35
SOLIDWORKS Motion – 2 days (14h)	37
SOLIDWORKS Simulation Professional – 2 days (14h)	38
SOLIDWORKS Simulation Premium – 3 days (21h)	40
SOLIDWORKS Simulation Premium Composite – 1 day (7h)	41
SOLIDWORKS Flow Simulation - 2 days (14h)	42
SOLIDWORKS Flow Simulation: HVAC Module - 1 day (7h)	43
SOLIDWORKS Flow Simulation: Electronic Cooling Module – 1 day (7h)	44
SOLIDWORKS Plastics – 1.5 day (10h), 2 days (14h) or 3 days (21h)	45

SOLIDWORKS Simulation Static – 3 days (21h)

1. The Analysis Process

- The analysis process
- SOLIDWORKS Simulation options
- Preprocessing
- Meshing
- Processing
- Postprocessing
- Multiple studies
- Reports
- Summary
- References

2. Mesh Controls, Stress Concentrations, and Boundary Conditions

- Objectives
- Mesh control
- Project description
- · Understanding the effect of boundary conditions

3. Assembly Analysis with Interactions

- Interaction analysis
- Contact or bonded interaction
- Pliers with local interaction

4. Symmetrical and Free Self- Equilibrated Assemblies

- Shrink fit parts
- Analysis with soft springs

5. Assembly Analysis with Connectors and Mesh Refinement

- Problem statement
- Remote load/mass
- Connectors
- Mesh control in an assembly
- Mesh plots

- 6. Bonded Mesh Options
 - Bonded mesh options
 - Centrifugal force
 - Cyclical symmetry
 - Bonding options
 - Bonding formulation

7. Analysis of Thin Components

- Thin components
- Mesh with solid elements
- Refined solid mesh
- Solid vs. Shell
- Creating shell elements
- Shell elements Mid-plane surface
- Results comparison
- 8. Mixed Meshing Shells & Solids
 - Mixed meshing Solids and shells
- 9. Beam Elements- Analysis of a Conveyor Frame
 - Beam and truss elements
- 10. Mixed Meshing Solids, Beams & Shells
 - Mixed Meshing
 - Beam Imprint

11. Design Study

- · Multiple load cases
- Geometry modification
- Course Objectives : At the end of each course, students will know the capabilities of the software and will be able to use the learned features. Training Course : Training is given in class at SolidXperts or online where each student has access to a workstation or online product version. Methodology : Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation : During the classwork, the instructor will correct the exercises on-demand and explain the solutions to the entire class if needed. Instructor : SolidXperts trainers are Certified SolidWorks Instructors (CSWI) and authorized by Emploi-Québec. Course Materials : One or more training manuals are included with the training course. Attestation : A certificate will be given to each student at the end of the course to attest to the successful completion of the requirements for the course.

see Part 2 on next page »

SOLIDWORKS Simulation Static (Part 2)

12. Thermal Stress Analysis

- Thermal stress analysis
- · Saving model in a deformed shape

13. Adaptive Meshing

- Adaptive meshing
- H-adaptivity study
- P-Adaptivity study
- H vs. P elements summary

14. Large Displacement Analysis

- Small vs. Large displacement analysis
- Small displacement linear analysis
- Large displacement non-linear analysis

Annex

- Meshing Strategy
- Geometry Preparation
- Meshing Quality
- Meshing Parameters
- Meshing Steps
- Failure Diagnosis
- Tips for the Shell Elements Usage
- Requirements for Meshing
- Solvers in SOLIDWORKS Simulation
- Solver Selection
- Help and Customer Support

SOLIDWORKS Motion – 2 days (14h)

- 1. Introduction to Motion Simulation and Forces
 - Basic motion analysis
 - Forces
 - Results
- 2. Building a Motion Model and Post Processing
 - · Creating local mates
 - Mates
 - Local mates
 - Power
 - Plotting kinematic results

3. Introduction to Contacts, Springs and Dampers

- Contact and friction
- Contact
- Contact groups
- Contact friction
- Translational spring
- Translational damper
- Post-processing
- Analysis with friction (optional)

4. Advanced Contact

- Contact forces
- STEP function
- Contact: Solid bodies
- · Geometrical description of contacts Integrators
- Instability points
- Modifying result plots
- Path Mate Motor

5. Curve to Curve Contact

- Contact forces
- Curve to curve contact
- Solid bodies vs. Curve to curve contact
- Solid bodies contact solution

6. CAM synthesis

- Cams
- Trace path
- Exporting trace path curves

7. Motion Optimisation

- Motion Optimisation
- Sensors
- Optimisation analysis

8. Flexible Joints

- Flexible joints
- System with Flexible Joints

9. Redundancies

- Redundancies
- How to check for redundancies
- Typical redundant mechanisms

10. Export to FEA

- Exporting results
- Export of load
- Direct solution in SOLIDWORKS motion

11. Event Based Simulation

- Event based simulation
- Servo motors
- Sensors
- Task

12. Design Projects (Optional)

- Design Project
- Self-guided problem Part 1
- Self-guided problem Part 2
- Problem solution Part 1
- Creating the force function
- Force expression

SOLIDWORKS Simulation Professional – 2 days (14h)

*The "SOLIDWORKS Simulation Static" Training is required for this class.

1. Frequency Analysis of Parts

- Modal analysis basics
- Frequency analysis with supports
- Frequency analysis without supports
- Frequency analysis with load

2. Frequency Analysis of Assemblies

- All bonded contact conditions
- Bonded and free interactions

3. Buckling Analysis

Buckling analysis

4. Load Cases

Load Cases

5. Submodeling

Submodeling

6. Topology Analysis

- Topology Analysis
- Manufacturing Controls
- Mesh Effects
- Load Cases in Topology Studies
- Export Smoothed Mesh

7. Thermal Analysis

- Thermal analysis basics ٠
- Steady-state thermal analysis
- Transient thermal analysis
- Transient analysis with time varying load
- Transient thermal analysis using a Thermostat

8. Thermal Analysis with radiation

Steady state analysis

9. Advanced Thermal Stress 2D Simplification

- ٠ Thermal stress analysis
- Thermal analysis
- 3D model

10. Fatigue Analysis

- Fatigue
- Stress-life (S-N) based fatigue
- Thermal study
- Thermal stress study
- Fatigue terminology
- Fatigue study
- Fatigue study with dead load

11. Variable Amplitude Fatigue

Fatigue study

see Part 2 on next page »

Course Objectives : At the end of each course, students will know the capabilities of the software and will be able to use the learned features. Training Course : Training is given in class at SolidXperts or online where each student has access to a workstation or online product version. Methodology : Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation : During the classwork, the instructor will correct the exercises on-demand and explain the solutions to the entire class if needed. Instructor : SolidXperts trainers are Certified SolidWorks Instructors (CSWI) and authorized by Emploi-Québec. Course Materials : One or more training manuals are included with the training course. Attestation : A certificate will be given to each student at the end of the course to attest to the successful completion of the requirements for the course.

WWW.SOLIDXPERTS.COM

SOLIDWORKS Simulation Professional (Part 2)

12. Drop Test Analysis

- Drop test analysis
- Rigid floor drop test
- Elastic floor/Elasto-Plastic Material
- Elasto-plastic material model
- Drop Test with Contact Interaction

13. Optimization Analysis

- Optimization analysis
- Static and frequency analyses

14. Pressure Vessel Analysis

- Pressure vessel analysis
- Manhole nozzle flange and cover

Course Outline SOLIDWORKS Simulation Training

SOLIDWORKS Simulation Premium – 3 days (21h)

* The "SOLIDWORKS Simulation Static" Training is required for this class. **The "SOLIDWORKS Simulation Professional" is required for this class.

NON-LINEAR

1. Large Displacement Analysis

- Linear static analysis
- Nonlinear static study
- Linear static study (Large displacement)

2. Incremental Control Techniques

- Incremental control techniques
- · Linear analysis
- Nonlinear analysis Force control
- Nonlinear analysis Displacement control

3. Nonlinear Static Buckling Analysis

- Linear buckling
- Linear static study
- Nonlinear symmetrical buckling
- Nonlinear asymmetrical buckling

4. Plastic Deformation

- Plastic deformation
- Problem statement
- Linear elastic
- Nonlinear von Mises
- Nonlinear Tresca's
- Stress accuracy
- Using Nonlinear Elastic Material

5. Hardening Rules

- Hardening rules
- Isotropic hardening
- Kinematic hardening

6. Analyse de topologie

- Two constant Mooney-Rivlin (1 material curve)
- Two constant Mooney-Rivlin (2 material curves)
- Two constant Mooney-Rivlin (3 material curves)
- Six constant Mooney-Rivlin (3 material curves)

7. Nonlinear Contact Analysis

Problem statement

8. Metal Forming

Bending

DYNAMIC

1. Vibration of a Pipe

- Static analysis
- Frequency analysis
- Dynamic analysis (slow force)
- Dynamic analysis (Fast force)
- 2. Transient Shock Analysis According to MILS- STD-810G
 - Model with remote mass
- 3. Harmonic Analysis of a Bracket
 - Harmonic analysis of a bracket

4. Response Spectrum Analysis

- Response Spectrum Analysis Response Spectrum
- 5. Random Vibration Analysis According to MIL-STD-810G
 - Random vibration analysis according to MIL-STD-810G

6. Random Vibration Fatigue

- Material properties, S-N curve
- Random vibration fatigue options
- 7. Nonlinear Dynamic Analysis of an Electronic Enclosure
 - Linear dynamic analysis
 - Nonlinear dynamic analysis

SOLIDWORKS Simulation Premium Composite – 1 day (7h) *The "SOLIDWORKS Simulation Static" training is required for this class.

**The "SOLIDWORKS Simulation Professional" training is required for this class.

- Introduction to Composites •
- Objectives
- **Composite Materials**
- Composite Lamina •
- **Composite Laminate** ٠
- SOLIDWORKS Simulation Premium: Composites •
- Composite Post Processing
- Case Study: Mountain Board
- **Project Description**
- Stages in the Process
- Lamina Properties
- **Experimental Measurements**
- Micromechanics

- **Required Parameters**
- Strength Parameters
- **Composite Options**
- **Composite Orientation**
- Offset
- Shell Alignment
- Composite Post Processing
- Stresses
- Inter Laminar Shear
- **Failure Criterion**
- Shear Stresses
- Summary
- Reference

Course Objectives : At the end of each course, students will know the capabilities of the software and will be able to use the learned features. Training Course : Training is given in class at SolidXperts or online where each student has access to a workstation or online product version. Methodology : Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation : During the classwork, the instructor will correct the exercises on-demand and explain the solutions to the entire class if needed. Instructor : SolidXperts trainers are Certified SolidWorks Instructors (CSWI) and authorized by Emploi-Québec. Course Materials : One or more training manuals are included with the training course. Attestation : A certificate will be given to each student at the end of the course to attest to the successful completion of the requirements for the course.

WWW.SOLIDXPERTS.CON

SOLIDWORKS Flow Simulation – 2 days (14h)

1. Creating a SOLIDWORKS Flow Simulation Project

- Model preparation
- Postprocessing

2. Meshing

- Computational mesh
- Basic mesh
- Initial mesh
- Geometry resolution
- Result resolution/Level of initial mesh
- Control planes

3. Thermal Analysis

- Fans
- Perforated plates

4. External Transient Analysis

- Reynolds number
- External flow
- Transient analysis
- Turbulence intensity
- Solution adaptive mesh refinement
- Two-dimensional flow
- Computational domain
- Calculation control options
- Time animation

5. Conjugate Heat Transfer

- Conjugate heat transfer
- Real gases

6. EFD Zooming

EFD Zooming

7. Porous Media

- Porous media
- Design modification

8. Rotating Reference Frames

- Rotating reference frame
- Averaging
- Noise Prediction
- Sliding Mesh
- Tangential faces of rotors
- Time step

9. Parametric Study

- Parametric analysis
- Steady state analysis

10. Free Surface

- Free Surface
- 11. Cavitation
 - Cavitation

12. Relative Humidity

Relative Humidity

13. Particle Trajectory

Particle Trajectory

14. Supersonic Flow

Supersonic Flow

15. FEA Load Transfer

FEA Load Transfer

SOLIDWORKS Flow Simulation: HVAC Module – 1 day (7h)

*The "SOLIDWORKS Flow Simulation" Training is required for this class.

1. Introduction to HVAC

- Objectives
- HVAC Module
- Case Study: Office
- Project Description
- Radiation
- Radiation Transparency
- Radiation Source
- Radiative Surface
- Discussion
- Comfort Parameters
- Conclusions

SOLIDWORKS Flow Simulation: Electronic Cooling Module – 1 day (7h)

*The "SOLIDWORKS Flow Simulation" training is required for this class.

1. Introduction to Electronics Module

- Objectives
- Electronic Module
- Case Study: Computer Box
- Project Description
- Conclusions

SOLIDWORKS Plastics - 1.5 day (10h), 2 day (14h) or 3 day (21h)

1. Basic Flow Analysis

- Basic Flow Analysis
- Injection Process
- Element Types
- Units
- User Interface
- Injection Units
- Material
- Boundary Conditions
- Injection Location
- Create Mesh
- Running a Flow Analysis
- Flow Results

2. Detecting Short Shots

- Detecting Short Shots
- Fill Properties
- Flow Front Central Temperature
- Configurations

3. Automation Tools

- Automation Tools
- Duplicate Study
- Plastics File Management
- Batch Manager

4. Injection Locations and Sink Marks

- Injection Locations and Sink Marks
- Injection Location Rules
- Visibility Commands
- Sink Marks
- Predict fill pattern
- Injection location advisor

5. Materials

- Materials Properties
- User-Defined Database
- Resin Properties
- Temperature Properties
- Heat Transfer Properties
- Viscosity
- PCT Data
- Mechanical Properties

6. Mesh Manipulation

- Mesh Manipulation
- Local Refinement of Mesh
- Edit/Review
- · Element Issues
- Leader Lines
- Solid Mesh
- Solid mesh size

7. Detecting Air Traps

- Detecting Air Traps
- Air Traps
- Venting
- Solver settings

8. Gate Blush

- Gate Blush
- Runner Elements

9. Packing and Cooling Times

- Pack and Cooling
- Flow/Pack Switch
- Pack Stage
- Pack Analysis
- Pack Results
- X-Y Plot
- Clipping Plane Mode
- Isosurface Mode
- CoolingTimes

Course Objectives : At the end of each course, students will know the capabilities of the software and will be able to use the learned features. Training Course : Training is given in class at SolidXperts or online where each student has access to a workstation or online product version. Methodology : Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation : During the classwork, the instructor will correct the exercises on-demand and explain the solutions to the entire class if needed. Instructor : SolidXperts trainers are Certified SolidWorks Instructors (CSWI) and authorized by Emploi-Québec. Course Materials : One or more training manuals are included with the training course. Attestation : A certificate will be given to each student at the end of the course to attest to the successful completion of the requirements for the course.

see Part 2 on next page »

SOLIDWORKS Plastics (Part 2)

10. Multiple Cavity Molds

- Multiple Cavity Molds
- Mold Layouts
- Channel Design
- Runner Channel Design
- Runner Wizard Channel Design
- Family Mold Layout
- Using Runner-Balancing

11. Symmetry Analysis

- · Symmetry analysis
- Symmetry
- Cyclic symmetry
- Cyclic

12. Valve Gates and Hot Runners

- Hot Runners
- Valve Gates

13. Reaction Injection Molding

Reaction Injection Molding

14. Using Inserts

- Using Inserts
- Inserts
- Metal Material Database

15. Multi Material Overmolding

- Multi-material overmolding
- Assigning injection units

16. Co-Injection Molding

- Co-Injection Molding
- Thick Parts

17. Bi-Injection Molding

- Bi-Injection Molding
- Copy and Paste
- Bi-Injection
- Injection Start Value

18. Cooling Analysis

- Cooling Analysis
- Cooling
- Cooling Channels and Mold Bodies
- Baffle
- Bubbler
- Cooling Simulations
- Coolant
- Mold
- Cool Parameters
- Cool Analysis
- Cool Results

19. Warpage Analysis

- Warpage Analysis
- Shrinkage
- Warpage
- Warp Parameters
- Warp Results
- Reducing and Fixing Warped Parts

Course Objectives : At the end of each course, students will know the capabilities of the software and will be able to use the learned features. Training Course : Training is given in class at SolidXperts or online where each student has access to a workstation or online product version. Methodology : Training is based on case studies demonstrated by the instructor. At the end of each lesson, time will be given for exercises. Competences Evaluation : During the classwork, the instructor will correct the exercises on-demand and explain the solutions to the entire class if needed. Instructor : SolidXperts trainers are Certified SolidWorks Instructors (CSWI) and authorized by Emploi-Québec. Course Materials : One or more training manuals are included with the training course. Attestation : A certificate will be given to each student at the end of the course to attest to the successful completion of the requirements for the course. WWW.SOLIDXPERTS.CON