Dans le domaine de la conception et de l’ingénierie, il est primordial de trouver le bon équilibre entre performance, utilisation des matériaux et coût. Que vous travailliez sur des pièces pour des applications automobiles, des composants aérospatiaux ou même des produits de consommation, l’objectif est souvent de créer des conceptions qui offrent des performances optimales tout en utilisant le moins de matériau possible.
C’est précisément là que l’optimisation topologique entre en jeu. Cette approche vous aide à déterminer la meilleure façon de distribuer le matériau dans votre conception pour répondre à vos objectifs de performance. Divers outils de Dassault Systèmes, tels que SOLIDWORKS Simulation Premium et SOLIDWORKS Simulation Professional, peuvent vous guider pour rendre vos pièces plus efficaces et rentables. SIMULIA, une autre gamme de solutions de Dassault Systèmes, prend également en charge l’optimisation topologique pour des besoins de simulation plus avancés.
Dans cet article, nous vous expliquons ce qu’est l’optimisation topologique et comment elle fonctionne. Vous découvrirez également comment elle peut vous aider à concevoir des pièces plus légères, plus solides et plus rentables à l’aide de divers outils de simulation.
Qu’est-ce que l’optimisation topologique ?
L’optimisation topologique consiste essentiellement à optimiser la disposition du matériau d’une pièce afin d’atteindre des objectifs de performance spécifiques. Imaginez cela comme sculpter une pièce d’argile : on retire le matériau inutile. Ensuite, on façonne le matériau restant pour que la pièce fonctionne comme prévu, sans excès de poids ni de matière.
Bien que le terme « topologique » puisse sembler technique, il fait en réalité référence à la manière dont le matériau est organisé dans un espace de conception donné. En termes simples, l’optimisation topologique vous aide à concevoir des pièces aussi efficaces que possible en plaçant stratégiquement le matériau là où il est le plus nécessaire. Le résultat final est une pièce plus légère, plus durable et mieux adaptée à sa fonction.
Objectifs et limites imposées clés de l’optimisation topologique
Lorsque vous lancez une étude d’optimisation topologique dans un logiciel de simulation, vous indiquez essentiellement au logiciel ce que vous voulez accomplir. Voici quelques-uns des objectifs et limites imposées généralement recherchés :
-
Contraintes : Garantir que la pièce peut supporter les forces sans défaillance. L’objectif est de placer le matériau exactement là où il est nécessaire pour supporter les contraintes appliquées à la pièce.
-
Facteur de sécurité : Il s’agit d’une réserve de résistance qui garantit que la pièce pourra supporter des conditions imprévues ou extrêmes, minimisant ainsi le risque de défaillance.
-
Fréquence : Pour les pièces soumises aux vibrations (comme les cadres ou supports), l’optimisation de la fréquence garantit que la pièce évite de résonner à certaines fréquences, ce qui pourrait entraîner une défaillance.
-
Fabricabilité : Peu importe l’efficacité d’une conception, elle doit encore être fabriquée. Les outils de simulation prennent en compte les contraintes réelles. Cela permet de s’assurer que la conception peut être produite en utilisant des méthodes comme l’usinage CNC, la fabrication additive ou le moulage par injection.
Comment fonctionne l’optimisation topologique ?
Le processus d’exécution d’une étude d’optimisation topologique est simple. Cela reste vrai que vous utilisiez SOLIDWORKS Simulation Premium, SOLIDWORKS Simulation Professional ou d’autres solutions de Dassault Systèmes. Voici une guide simplifié étape par étape :
-
Définir l’espace de conception : Vous commencez par définir la zone dans laquelle le matériau peut être placé ou retiré. C’est la région où vous allez optimiser la conception.
-
Appliquer les charges et déplacements imposés : Vous définissez ensuite les forces, pressions et toutes les contraintes que la pièce subira dans le monde réel. Par exemple, vous pourriez spécifier des zones où la pièce est fixée ou sous charge.
-
Définir vos objectifs d’optimisation : Vous spécifiez ensuite ce que vous voulez accomplir avec l’optimisation. Voulez-vous réduire le poids ? Améliorer la résistance ? Ou peut-être augmenter la marge de sécurité ? Les outils de simulation vous permettent de définir plusieurs objectifs simultanément.
-
Exécuter la simulation : Une fois tous les paramètres définis, le logiciel exécute la simulation. Il retire progressivement le matériau des zones qui ne contribuent pas de manière significative à la performance, tout en conservant la structure nécessaire.
-
Évaluer et affiner la conception : Une fois le processus d’optimisation terminé, vous obtenez une conception qui répond à vos exigences de performance. Vous pouvez alors l’affiner pour vous assurer qu’elle correspond à vos processus de fabrication spécifiques.
Pourquoi devriez-vous utiliser l’optimisation topologique ?
Voici quelques raisons convaincantes d’intégrer l’optimisation topologique dans votre processus de conception :
-
Efficacité des matériaux
L’optimisation topologique vous permet d’utiliser uniquement la quantité de matériau nécessaire, créant ainsi des pièces plus légères et plus efficaces. Cela est particulièrement important dans des industries comme l’aérospatiale ou l’automobile, où chaque gramme économisé peut conduire à de meilleures performances. -
Réduction des coûts
Utiliser moins de matériau se traduit par des économies directes. L’optimisation topologique peut aider à réduire les coûts des matériaux et de la fabrication. En effet, les pièces plus légères sont souvent plus faciles et moins coûteuses à produire. -
Amélioration des performances
En plaçant stratégiquement le matériau là où il est le plus nécessaire, l’optimisation topologique renforce l’efficacité structurelle de votre conception. Elle garantit ainsi une solidité maximale sans ajouter de poids ou de matériau superflu. Cela permet d’améliorer les performances globales des pièces. -
Processus de conception plus rapide
Au lieu d’explorer manuellement différentes options de conception, les outils de simulation automatisent ce processus. Ils vous permettent de réaliser rapidement plusieurs simulations et de trouver la meilleure solution. Cela vous fait gagner du temps et de l’effort pendant la phase de conception. -
Fabricabilité dans le monde réel
Les outils de simulation ne se contentent pas d’optimiser la performance. Ils tiennent également compte de la fabricabilité. Que vous utilisiez l’impression 3D, l’usinage traditionnel ou le moulage par injection, le logiciel garantit que votre conception optimisée peut être fabriquée à l’aide de méthodes réelles.
Applications réelles de l’optimisation topologique
Voici quelques exemples d’industries qui bénéficient de l’optimisation topologique :
-
Aéronautique : Les pièces plus légères et optimisées sont cruciales pour améliorer l’efficacité du carburant et réduire le poids des aéronefs. Les ingénieurs utilisent l’optimisation topologique pour concevoir des composants performants. Ces composants répondent à la fois aux objectifs de performance et de réduction de poids.
-
Automobile : Dans l’industrie automobile, l’optimisation des pièces pour réduire le poids sans compromettre la sécurité et la durabilité est essentielle. Cela permet de diminuer la consommation de carburant ainsi que les coûts de production.
-
Produits de consommation : Des téléphones intelligents aux équipements sportifs, l’optimisation topologique aide les concepteurs à créer des produits à la fois solides et légers. Cela permet d’offrir de meilleures performances et une expérience utilisateur améliorée.
-
Dispositifs médicaux : Dans le domaine médical, notamment pour les implants ou les prothèses, l’optimisation topologique peut aider à créer des conceptions confortables et efficaces. Elle permet également de réduire la quantité de matériau utilisé sans compromettre les performances.
Cet exemple de pédale de frein non linéaire montre la progression de l’optimisation topologique alors qu’elle tente de maximiser la rigidité tout en réduisant le volume de 50 % au cours de 31 cycles de conception.
Source : PDF SIMULIA – Abaqus Topology Optimization Module
Un aperçu de la conception générative
Bien que l’optimisation topologique soit une méthode fiable et éprouvée pour optimiser les conceptions, la conception générative est une approche plus récente qui peut aller plus loin. Elle utilise des algorithmes puissants pour créer plusieurs alternatives de conception basées sur un ensemble de paramètres d’entrée. Elle optimise non seulement la disposition du matériau, mais explore également de nouvelles formes et structures qui ne seraient pas immédiatement apparentes.
Par exemple, la conception générative peut suggérer des géométries ou structures inhabituelles, souvent plus légères et plus efficaces que celles issues des approches traditionnelles. Ces formes sont particulièrement adaptées à la fabrication additive (impression 3D).
Bien que la conception générative soit une technologie de pointe, l’optimisation topologique reste un excellent point de départ pour les ingénieurs et concepteurs qui souhaitent créer des pièces plus efficaces, plus légères et plus solides, tout en respectant les contraintes de fabrication.
Concevez le futur : efficacité et économies avec l’optimisation topologique dans SOLIDWORKS
Que vous utilisiez SOLIDWORKS Simulation Premium, SOLIDWORKS Simulation Professional ou d’autres outils de simulation avancés, l’optimisation topologique est un véritable atout pour concevoir des pièces plus efficaces et rentables. En optimisant l’utilisation du matériau en fonction des objectifs de conception spécifiques, vous pouvez créer des pièces qui offrent de meilleures performances tout en utilisant moins de matériau.
Que vous cherchiez à réduire le poids, améliorer la résistance ou économiser sur les coûts de fabrication, l’optimisation topologique peut vous aider à atteindre tous ces objectifs.
Et si vous êtes intéressé par des possibilités encore plus innovantes, la conception générative est une approche fascinante qui repose sur les bases de l’optimisation pour explorer de nouvelles solutions créatives.
Prêt à optimiser vos conceptions ? Cette série de courtes vidéos vous montre comment créer une étude d’optimisation topologique avec SOLIDWORKS Simulation afin de vous aider à atteindre vos objectifs. Vous souhaitez aller plus loin ? Contactez nos experts pour suivre une formation ou en savoir plus sur SOLIDWORKS Simulation.
Vous avez des questions ? Besoin d’aide ? Demandez à l’un de nos experts.
Que vous soyez prêt à commencer ou que vous ayez quelques questions supplémentaires, vous pouvez nous contacter sans frais :